NetworkxTransformFeatures¶
- 
class 
caldera.transforms.networkx.NetworkxTransformFeatures(node_transform=None, edge_transform=None, global_transform=None)[source]¶ Transform networkx feature data.
def only_self_loops(edges): for e1, e2, edata in edges: if e1 == e2: yield e1, e2, edata transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
Alternatively, using the functional programming module:
from caldera.utils.functional import Functional only_self_loops = Fn.filter_each(lambda x: x[0] == x[1]) transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
- Parameters
 node_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –edge_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –global_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –kwargs –
- Returns
 
- 
__init__(node_transform=None, edge_transform=None, global_transform=None)[source]¶ Transform networkx feature data.
def only_self_loops(edges): for e1, e2, edata in edges: if e1 == e2: yield e1, e2, edata transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
Alternatively, using the functional programming module:
from caldera.utils.functional import Functional only_self_loops = Fn.filter_each(lambda x: x[0] == x[1]) transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
- Parameters
 node_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –edge_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –global_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –kwargs –
- Returns
 
Methods
__init__([node_transform, edge_transform, …])Transform networkx feature data.
generate(datalist)- param datalist
 
transform(g)- 
__init__(node_transform=None, edge_transform=None, global_transform=None)[source]¶ Transform networkx feature data.
def only_self_loops(edges): for e1, e2, edata in edges: if e1 == e2: yield e1, e2, edata transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
Alternatively, using the functional programming module:
from caldera.utils.functional import Functional only_self_loops = Fn.filter_each(lambda x: x[0] == x[1]) transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
- Parameters
 node_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –edge_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –global_transform (
Optional[Callable[[Generator[Tuple,None,None]],Generator[Tuple,None,None]]]) –kwargs –
- Returns