NetworkxTransformFeatures¶
-
class
caldera.transforms.networkx.
NetworkxTransformFeatures
(node_transform=None, edge_transform=None, global_transform=None)[source]¶ Transform networkx feature data.
def only_self_loops(edges): for e1, e2, edata in edges: if e1 == e2: yield e1, e2, edata transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
Alternatively, using the functional programming module:
from caldera.utils.functional import Functional only_self_loops = Fn.filter_each(lambda x: x[0] == x[1]) transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
- Parameters
node_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –edge_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –global_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –kwargs –
- Returns
-
__init__
(node_transform=None, edge_transform=None, global_transform=None)[source]¶ Transform networkx feature data.
def only_self_loops(edges): for e1, e2, edata in edges: if e1 == e2: yield e1, e2, edata transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
Alternatively, using the functional programming module:
from caldera.utils.functional import Functional only_self_loops = Fn.filter_each(lambda x: x[0] == x[1]) transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
- Parameters
node_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –edge_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –global_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –kwargs –
- Returns
Methods
__init__
([node_transform, edge_transform, …])Transform networkx feature data.
generate
(datalist)- param datalist
transform
(g)-
__init__
(node_transform=None, edge_transform=None, global_transform=None)[source]¶ Transform networkx feature data.
def only_self_loops(edges): for e1, e2, edata in edges: if e1 == e2: yield e1, e2, edata transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
Alternatively, using the functional programming module:
from caldera.utils.functional import Functional only_self_loops = Fn.filter_each(lambda x: x[0] == x[1]) transform = nx_transform(edge_transform=only_self_loops) transform(graphs)
- Parameters
node_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –edge_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –global_transform (
Optional
[Callable
[[Generator
[Tuple
,None
,None
]],Generator
[Tuple
,None
,None
]]]) –kwargs –
- Returns